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We discuss the adsorption of multiblock copolymers at the interface between two
selective solvents of the constituent monomers. We consider two cases, namely when the
blocks are regular, and when the copolymer is made of random sequences. In both cases,
we discuss the various surface regimes, and we compare the properties of the layers. We
find that the saturation concentration and the drop in surface tension are larger for the
random case, except when selectivity and the number of sequences of the regular chain
are both large.
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. INTRODUCTION

The conformation of polymers and copolymers at interfaces has
attracted some attention recently both from theoretical and experi-
mental points of view [1—17]. This is related to the facts that many
applications are possible for these systems. It is also related to the
recent fundamental interest in the influence of surfaces on phase
transitions. Homopolymers [1, 6, 18] were shown to build up a surface
layer with a monomer density profile that decreases as a function of
the distance from the surface as a power law. In the proximal region,
close to the interface, the exponent is related to surface properties,
while in the central region, further away from the surface the exponent
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is related to bulk properties, and the profile was shown by de Gennes
to be self-similar [1]. Also, it was shown that two different cases may
be considered. These depend on the nature of the surface. It was
shown that the exponents are different for an impenetrable surface,
and for a penetrable surface between two immiscible solvents for in-
stance. For all cases, the various surface regimes were determined, as
well as the corresponding density profiles. Adsorption of diblock
copolymers at surfaces was also considered. Motivated by studies
about beta casein at the air/water interface, regular multiblock co-
polymers were studied very recently [12, 13]. In what follows, we would
like to consider the case of random copolymers, made of a random
succession of monomers A and B of different chemical nature. The
latter was considered by Garel and Orland [19,20] in the single
random, non correlated chain case. But the influence of concentration
was not studied so far. Similarly, the case of correlated random
distributions of monomers along the copolymer was not considered so
far to our knowledge. This is what is done here, together with a
comparison between the regular and random cases. In what follows,
we will first remind the main results for homopolymers and for the
regular, symmetric multiblock copolymers. We will then discuss the
random, non correlated and correlated cases. The comparison between
both cases is given in the last chapter.

Il. REGULAR MULTIBLOCKS

Let us consider a regular, symmetric multiblock copolymer, made of
2N successive blocks of two different monomer species A and B. Each
block has the same number Z of monomers. This copolymer is
assumed to be at the interface between two immiscible solvents. The
interface is supposed to be flat. Each of the solvents has a preference
for one of the constituents Solvent 1 (resp.2) slightly prefers monomer
A (resp.B). This was considered recently by Sommer et al. [21]. It may
be discussed in terms of monomer—solvent interaction parameters.
Let x;. be the interaction between solvent i (1 or 2) and monomer «
(A or B). We also assume that the interactions are symmetric: x5 =
x28 =X and xigp = x2a = X. This implies that there is a single energy
parameter that describes the problem, namely the energy gain 6 when a
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monomer goes into its preferred solvent:

b=x-X (1)

In the following, we will consider the case of weak selectivity, when ¢
is small. In order to understand the behavior of the multiblock at
the interface, one needs first to discuss that of a diblock: the entire
copolymer may indeed be considered as a homopolymer, with a
diblock as repeat unit. This was already considered by Sommer et al.,
who provided a Flory approach to this problem. Because of the weak
selectivity of the solvents, the centers of gravity of sequences A and B
are slightly on either side of the interface. Let x be their distance.
When the selectivity of the solvents is too weak, the centers of gravity
come back on top of each other, and x vanishes. The free energy Fy4 of
a diblock close to such selective interface is assumed to have two
contributions

x? x

Fq R +Z R (2)
where the first term is an entropic energy that corresponds to re-
storing both centers of gravity at the same location. The second term is
the energy gain because of the fact that a fraction of the monomers
becomes located in its favorite solvent. It was assumed that this
fraction is proportional to the ratio X/R,, where Ry is the Flory radius
of the diblock, Ry ~ Z}, where a is the step length and v the excluded
volume exponent, approximately 3/5. Minimization of this free energy
with respect to x leads to

X ~ R() 76 (3‘1)
and to a minimized free energy for a diblock
Fq— (26)* (3b)

As mentioned above, the entire copolymer may be considered as a
homopolymer, made of N diblocks, close to a penetrable interface.
The unit of this is the diblock that we just considered above. The
former problem was studied by Bray and Moore [24] some years ago,
and they showed that when the interaction between the surface and
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each unit is weak, the average number Ng of units near the interface is
Ns ~ N*/3 (4)

So that the free energy gain of a copolymer near the interface is, using
relations (3b) and (4):

F ~ N*3(26)? (5)

This has to be compared with a loss of entropy of order kT, related to
the localization of the center of mass of the copolymer in the vicinity
of the interface. We take the latter equal to unity in our discussion.
Therefore, when Z N'/°§ is smaller than unity, the selectivity is not
large enough to induce any adsorption of the chains. In the opposite
limit, on the contrary, the copolymer is adsorbed by the interface. This
happens when selectivity is large enough (but still smaller than unity).
It also occurs for a given selectivity when the number of sequences is
large, or when each sequence is made of a large number of monomers.
Thus the cross over [22] between the adsorbed and non adsorbed
regimes is for

& ~Z INTI (6a)

Let M be the total number of monomers, M =Z7ZN. The previous
equation may be rewritten as

&~ MTINYS o M5 7745 (6b)

The latter relation shows clearly that for a given total number of
monomers, the number of sequences and their lengths have a very
different effect on the crossover energy: increasing the number N of
sequences leads to an increase of §*. On the other hand, increasing the
length Z of each sequence lowers §* and therefore makes adsorption
of a copolymer easier. Let us note that for values of the selectivity
parameter ¢ larger than ¢*, the copolymer is adsorbed, but there
remains isotropic parts made of N* sequences, with energy of order
kT, such that

N* ~ (26)7 (7a)



10: 07 19 January 2011

Downl oaded At:

COPOLYMERS AT INTERFACES 35

These were called isotropic blobs, and have an energy of order unity,
and a radius D such that

D~ (N2)Pan~ 6732712 (8)

This implies that the free energy gain of an adsorbed copolymer is,
for N* > 1

F, ~ N/N* (7b)

The above discussion dealt with the case of a single copolymer, or a
dilute solution of adsorbed chains. Another situation of interest is
when the interface is saturated with chains. It was shown that for small
6, this does not correspond to the occupancy of all the sites of the
interface by monomers, but rather to its saturation by the isotropic
blobs that were considered above. This implies that the surface
concentration is identical to that in the isotropic blobs. Note that the
former is the average concentration in the region of width D near the
interface:

Lot ~ N*Z/D? ~ 2456 (9)

When the surface is saturated, the profile extends to distances on the
order of the radius of gyration of the chain because of the formation of
very large loops. Because the interface is penetrable, the concentration
profile is flat in the proximal region, for distances to the interface
smaller than D. For larger distances, in the central regime, the profile
is self similar, as shown by de Gennes [23]:

d(z) ~z** (D<xz<R) (10a)

For larger distances, the profile decreases exponentially towards the
bulk concentration. Note that although the concentration at the
interface is in the semi-dilute range, the bulk concentration may be
in the dilute regime because of the Boltzmann weight related to
the energy gain by adsorbed chains, (Eq. (7a)). Note also that the
concentration in isotropic blobs is also self-similar. Equation (10a)
may also be written in the following form:

®(z)/®(D) ~ (z/D)"*? (10b)
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A final quantity that may be considered is the reduction in surface
tension Ay due to the adsorption of the chains at the interface. In the
dilute and semi dilute surface regimes, the change is proportional to
the concentration in isotropic blobs. This gives

Ay ~ T /N L1746 (11a)

In the plateau regime, it was shown [25] that the reduction A< is
composed of two contributions. The first one corresponds to the
surface free energy of the chains. As discussed above, in the plateau, or
saturated regime, the surface is covered with isotropic blobs. Each of
these has an energy of the order of the thermal energy. Thus this first
contribution is

Ay =-D7?

The second contribution is the so-called Gibbs contribution, and may
be written, in the plateau regime, in the simple following form [11]:

Ay = —Tsatio

where py, is the bulk monomer chemical potential, and T is the surface
concentration. Taking these two parts into account leads to a variation
A~ of the surface tension

Ay = =857 — ) 7436 (11b)

where ¢y, is the bulk monomer concentration in the solution, and
where we used Eqgs. (8) and (9) for D and I'y,,. We also used the known
fact that in a semi dilute solution, we have up, = ¢;5)/ % The second term
in relation (11) is present only when the bulk concentration is in the
semi dilute range. It is smaller than the first one except for con-
centrated regimes that we are not considering here, where both terms
become of the same order.

lll. RANDOM MULTIBLOCKS

It is also interesting to consider random copolymers. These may either
be synthetic or natural. An important example of the latter case is that
of proteins. These are especially interesting because although they may
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be random, they provide solutions of random, but identical macro-
molecules. This is not the case for synthetic polymers, where ran-
domness comes both in the sequences on a given copolymer, but
also in the composition of the chains. It was already shown that
surfaces act as a strong filter, adsorbing only symmetric chains and
letting asymmetric copolymers in the bulk. Therefore, in what follows,
we will consider only symmetric chains, made of the same number of
monomers A and B. In the random non correlated case, it was shown
by Garel et al. [19] that adsorption of one copolymer is due to a
different mechanism: this is related to the fact that if one consider a
sequence of n monomers on a chain, there is, on the average, an excess
of one of the species of the order of n'?. A copolymer with N mono-
mers may be considered as a diblock, with one of the blocks having
an excess of one of the species. The other block has an excess of the
other one. As N increases, these blocks tend to localize in their favorite
solvent, and the chain becomes trapped at the interface. In what
follows, we will consider both cases, for non correlated and correlated
disorder of the monomers on the chain. We will first study the single
copolymer case and then the concentration effects, and the important
case when the interface is saturated.

lll.1. Random Non Correlated Case

Let us consider a copolymer made of the random, non correlated
succession of two monomer species A and B. This is at the interface
between two immiscible solvents 1 and 2 with same characteristics as
above. We assume both solvents to be good for either species, but with
a preference for one or the other. When the selectivity of the solvents is
too low, the copolymer retains an isotropic configuration in both
solvents. As selectivity increases, there is a tendency for each species to
go into its preferred solvent, so that the center of mass of the chain
localizes near the interface. The cross over between these situations
was evaluated in the following way: on the average, if we consider a
sequence of n monomers along the chain, there is an excess of one of
the species which is on the order of n'/?. This implies that there is a
cross-over length N*, such that

N*126 ~ 1 (12)
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where the random copolymer may be considered as a diblock with
each block having an excess of monomer species in its preferred
solvent such that the energy gain is of the same order as the thermal
energy. For larger lengths, the copolymer may be subdivided into
pieces with N* monomers that lie alternatively on each side of the
interface. This may be described in terms of isotropic blobs made of
N* monomers and size

D ~ N*3/5 ~ §76/5 (13)
And the radius of the copolymer along the interface is:
R~ (N/N")*D (14a)
The energy gain per chain is
E ~ N/N* (14b)

As surface concentration I' increases, the copolymers overlap at I'*
such that

I ~ N/R> ~ N~ '/2§73/5 15
I

for larger concentrations, one gets a semi dilute surface regime, where
one has to define a screening length £ in addition to the radius on the
surface. Both lengths may be obtained by assuming a scaled form for
the concentration dependence of the various lengths:

Ry, ~ N8 /108 (DN'2§%/3) (16a)
and
R, ~ Dg(IN'2§%/3) (16b)

where f(x) and g(x) are unknown scaling functions, with known
asymptotic behaviors: they are analytical for small arguments, and
behave as power laws for large x.

This leads respectively to

Ry~ (N/T)'/? (17a)
E~T 3257305 (17b)

RJ_ ~ N3/5 F6/5 6_12/25 (170)
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where we assumed that R varies as N2 because of screening in the
semi dilute range, and that ¢ is independent of the size N of the chains.
We also assumed in relation (17¢) that large loops are present because
of the interactions between chains in the semi dilute surface regime.
This implies that the molecular weight dependence of the width of the
adsorbed layer varies as N°/°.

As surface concentration increases, one gets into the saturated
regime. The cross over concentration I'g,; may be found for instance
by comparing the size D of the isotropic blobs, relation (11) and that
of the surface concentration blob &, relation (17b). We remind that the
isotropic blob corresponds to a part of the chains that gains an
attractive energy from the surface on the order of the thermal energy.
The surface blob corresponds to a part of the copolymer that has a
repulsive interaction energy of the same order. Therefore, equality of
these lengths corresponds to a compensation between the attractive
and repulsive energies of the adsorbed macromolecules. Trying to
increase the surface concentration I' above I'y,; would increase the
repulsive energy per chain without any gain.

Using Eqs. (11) and (17b), we get

Dyt ~ 6° (18)

The corresponding phase diagram is shown on Figure 2.

1ll.2. The Random Correlated Case

Finally let us consider a random symmetric copolymer, made of the
same number N/2 of monomers of two different species A and B. The
difference with the previous section lies in the fact that we assume now
that although the monomers are distributed at random along the
chain, there is a strong correlation in their positions: if we assume that
a site is occupied by one of the species, then the probability P(n) that a
site at a curvilinear distance n from that site is occupied by the same
species decreases as a power law of the distance:

P(n) ~n~ (0<x<1) (19)

This implies that if we consider a sequence made of n monomers along
the macromolecule, the excess of one of the species is [26], on the
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FIGURE 1 Phase diagram showing the various regimes of adsorbed regular copoly-

mers. I is the dilute surface regime; II is semi dilute. I'y,, is the saturation concentration
for the surface. Regions in the lower part of the diagram correspond to isotropic chains.

*

average, on the order of n' ~*/?. The Brownian case that we con-

sidered above is recovered for x = 1. Thus the same arguments as above
may be given for the adsorption of a copolymer at the interface
between two selective, immiscible, solvents. When the chain is short,
the fluctuations are not sufficiently important to induce the localiza-
tion at the interface. This happens for a length N* such that the energy
gain is of order unity:

NAI=*28 1 (20)

For larger chains, the copolymer lies on the interface and has
characteristic dimensions R along the surface and D in the normal
direction. These may be obtained by a direct scaling argument, where
we assume that both lengths depend only on the dimensionless energy
given in Eq. (20)

R ~ N3/ f(N!7/2¢) (21a)
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FIGURE 2 Phase diagram for a random copolymer in the general case. The various
regimes are the same as in Figure 1.

*

leading to
R ~ N3/45%/200 (21b)
And
D~ §73/% (21c)

where ¢ = (2—x)/2. (thus ¢ varies from 1 to 1/2 as x varies from 0 to 1).
Note that we can define an isotropic blob as above, made of N*
elements, and such that its size is D. The free energy gain E of the
copolymer at the interface is the number of such blobs per chain:

E ~ N/N* ~ N§'/¢ (21d)

Note that this implies that the surface concentration is exponentially
larger than the bulk concentration. Thus even when the bulk concen-
tration is very low, the surface concentration may be in a concentrated
range.
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FIGURE 3 Comparison of the surface concentrations for regular and random
copolymers. Two different cases may be present: The saturation concentration is larger
for the random case except when the number N of sequences in the regular copolymer §
is large (curve b), and the selectivity is also large- or, equivalently, temperature is low.

As one increases the surface concentration, the isolated adsorbed
copolymers come closer to each other, and eventually start over-
lapping. This occurs for concentrations larger than an overlap
concentration

I~ N/Rj ~ N~'/2673/100 (22)

For larger concentrations, in the semi dilute surface regime, one is
led to define two more distances, namely a screening length & and
the width R, of the adsorbed layer. The latter increases because
the presence of excluded volume interactions between different
macromolecules leads to the formation of very large loops. Ulti-
mately, in the saturation regime to be discussed below, the latter
have the size of the polymer itself. This implies that the width
varies as N¥°. Using the same type of scaling arguments as in
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the previous section, we find

Ry~ (/D) (232)
g~ D32573/100 (23b)
R, ~ N/T6/3576/2% (23¢)

Note that for ¢ = 1/2, we recover the results of Section II.1 for the non
correlated case, Eqgs. (17).

The cross over to the saturated surface regime occurs when the re-
pulsive and attractive interactions are of the same order of magnitudes.
This is found by comparing £ and D. Using Egs. (21¢) and (23b), we
find

-Fsat ~ 61/5@ (24)

Note that in the saturated regime, very large loops are present, so that
the width of the adsorbed layer is on the same order as the free radius
of the chain, R, ~ N3/,

Finally, the change in tension may be estimated following the same
lines as for the regular multiblocks, see discussion above Egs. (11). In
the dilute regime, it is proportional to the concentration in isotropic
blobs,

Ay ~T/N* ~T6'/? (25a)

In the plateau regime, when the interface is saturated, the change A~y
may be written as the sum of two contributions:

Ay =—-D"2— Teu (25b)

where the first term is the surface free energy gain, and the second one
is the Gibbs contribution. Using relations (21c) and (24), we find

A’Y _ 7§6/5¢6 _ ¢l57/451/5¢ (26)

The second term is present only when the bulk is a semi dilute solution,
and is smaller than the first one as long as the solution is not too
concentrated, ¢, < 5*3?_ which is the case we are considering here.
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Note that for ¢ =1/2, Eq. (26) gives the non correlated case of the
previous section: Ayg = —6'%/° — ¢Z/452/5.

IV. DISCUSSION

Let us now compare the various results that we obtained above. In
what follows we will consider copolymers made of a total number of
M Monomers. So with our previous notations, M=NZ for the
regular case, and M =N for the random case. For the single copoly-
mer case, the cross over from isotropic to adsorbed states, equation
occurs for

5~ MOINAS o M5 745 (6b)

reg

This may be compared first with the cross over for adsorbing a
homopolymer at an interface between two solvents. For the latter case,
we know that the corresponding cross over occurs for

6;;01110 ~ M72/5 (27)
The ratio

Oreg/ Oromo ~ M PN o M 377413 (28a)

homo

This ratio is of order unity for a special mass
M* ~ N*3 ~ 7 (28b)

When the ratio (28a) is smaller than unity, a regular copolymer
adsorbs at the interface more easily than a homopolymer with same
mass. This happens for large masses, M > M*, for a given number N
of sequences in the copolymer. It happens for small masses on the
contrary, M < M*, for a given size Z of the sequences.
Let us now consider the random copolymer cases. For the latter, we
found
o ~M? (20a)

ran

where ¢ is defined below Eq. (21c), and has value between 1/2 and 1.
Comparing Eqgs. (27) and (20a), we find that because ¢ is larger
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than 1/2, the cross over for random copolymers always occurs for
smaller values of the parameter 6. It is always easier to adsorb a
random copolymer than a homopolymer with same mass. Comparing
relations (6b) and (20a) for the regular and random copolymer cases,
we find

5;‘%/(5* ~ Ml—(/;N—4/5 ~ M(l—qu)/SZ4/5 (29)

reg

where the exponent for the total mass, M, variation is positive in the
middle part and negative in the last part of the equation because of the
restriction on the value of the cross over exponent ¢ mentioned above.
Both systems are equivalent, and the cross over values are comparable
for a special value of M, M* such that

M* ~ N4/5(1—®) ~ 74/5(6-1) (30)

Therefore, for a given value of the selectivity 6, it is easier to adsorb a
random than a regular copolymer when M is smaller than M* for a
given number N of sequences. This implies that the sequences in the
regular copolymer are short. It is also easier when M is smaller than
M* when the size of the sequences is given. This implies a large number
of sequences.

The previous discussion was about a single chain at the interface.
We consider now the saturation — or plateau-regimes. In both cases,
for regular and random copolymers, the width of the adsorbed layer is
of the same order, namely the radius of gyration M*?, of the isotropic
chains. But surface concentrations and surface tension drops are not
similar: Using relations (9), (11), (24) and (26), we find:

Tree/Tsac ~ (2/2°)*° (31a)

and
Yreg/ Oean = (Z/Z*)**° (31b)

with
7 ~ 570D/ (31c)

Thus both surface concentration and surface tension drop are larger
for regular copolymers when the number of monomers per sequence is
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large. The latter result is valid both when the bulk solution is dilute or
semi dilute. Figure 2 shows both diagrams for the regular and random
cases. One can see that for N <N*, or Z>Z*, é},, <6}, and there is
no intersection of the saturation curves. In this case, the saturation
concentration for the random case is always larger than the one for the
regular case. In the opposite case, for N > N*, or Z < Z* there is an
intersection, and regular copolymers lead to a more concentrated
surface if the selectivity of the interface is large enough, § > ép~
Z~#/69=D " Although this does not appear clearly in relation (31a)
above, it may be shown in the following way: the surface concentra-
tion corresponding to the crossing of both curves is

Tp ~ 51F/5¢ ~ 74/5(59-1)

The latter concentration has to be larger than the overlap concentra-
tion I'* for the isotropic polymers, I'* ~ M ~ > Taking this condition
into account leads to a crossing only in the case discussed above. We
conclude this discussion by noting that the surface concentration at
saturation is larger for random copolymers than for regular ones,
except for both large selectivity and large number of sequences. Using
Eqgs. (11) and (25), one can show that similar arguments hold for the
change in surface tension.
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